Примерное время чтения: 4 минуты
6919

Что такое гипотеза Римана?

Категория:  Открытия
Ответ редакции

Профессор Оксфордского, Кембриджского и Эдинбургского университетов, а также лауреат почти десятка престижных премий в области математики Майкл Фрэнсис Атья представил доказательство гипотезы Римана, одной из семи «проблем тысячелетия», которая описывает, как расположены на числовой прямой простые числа.

Доказательство Атьи небольшое, вместе с введением и списком литературы оно занимает пять страниц. Ученый утверждает, что нашел решение гипотезы, анализируя проблемы, связанные с постоянной тонкой структуры, а в качестве инструмента использовал функцию Тодда. Если научное сообщество сочтет доказательство корректным, то за него британец получит $1 млн от Института математики Клея (Clay Mathematics Institute, Кембридж, Массачусетс).

На приз претендуют также другие ученые. В 2015 году о решении гипотезы Римана заявлял профессор математики Опиеми Энох (Opeyemi Enoch) из Нигерии, а в 2016 году свое доказательство гипотезы представил российский математик Игорь Турканов. По словам представителей Института математики, для того чтобы достижение было зафиксировано, его необходимо опубликовать в авторитетном международном журнале с последующим подтверждением доказательства научным сообществом.

В чем суть гипотезы?

Гипотезу еще в 1859 году сформулировал немецкий математик Бернхард Риман. Он определил формулу, так называемую дзета-функцию, для количества простых чисел до заданного предела. Ученый выяснил, что нет никакой закономерности, которая бы описывала, как часто в числовом ряду появляются простые числа, при этом он обнаружил, что количество простых чисел, не превосходящих x, выражается через распределение так называемых «нетривиальных нулей» дзета-функции.

Риман был уверен в правильности выведенной формулы, однако он не мог установить, от какого простого утверждения полностью зависит это распределение. В результате он выдвинул гипотезу, которая заключается в том, что все нетривиальные нули дзета-функции имеют действительную часть, равную ½, и лежат на вертикальной линии Re=0,5 комплексной плоскости.

Доказательство или опровержение гипотезы Римана очень важно для теории распределения простых чисел, говорит аспирант факультета математики Высшей школы экономики Александр Калмынин. «Гипотеза Римана — это утверждение, которое эквивалентно некоторой формуле для количества простых чисел, не превосходящих данное число x. Гипотеза, например, позволяет достаточно быстро и с большой точностью посчитать количество простых чисел, не превосходящих, к примеру, 10 млрд. Это не единственная ценность гипотезы, потому что у нее есть еще целый ряд довольно далеко идущих обобщений, которые известны как обобщенная гипотеза Римана, расширенная гипотеза Римана и большая гипотеза Римана. Они имеют еще большее значение для разных разделов математики, но в первую очередь важность гипотезы определяется теорией простых чисел», — говорит Калмынин.

По словам эксперта, при помощи гипотезы можно решать ряд классических задач теории чисел: задачи Гаусса о квадратичных полях (проблема десятого дискриминанта), задачи Эйлера об удобных числах, гипотезу Виноградова о квадратичных невычетах и т. д. В современной математике данной гипотезой пользуются для доказательства утверждений о простых числах. «Мы сразу предполагаем, что верна какая-то сильная гипотеза типа гипотезы Римана, и смотрим, что получается. Когда у нас это получается, то мы задаемся вопросом: можем ли мы это доказать без предположения гипотезы? И, хотя такое утверждение пока за пределами того, чего мы можем достигнуть, оно работает как маяк. За счет того, что есть такая гипотеза, мы можем смотреть, куда нам двигаться», — говорит Калмынин.

Доказательство гипотезы также может повлиять на совершенствование информационных технологий, поскольку процессы шифрования и кодирования сегодня зависят от эффективности разных алгоритмов. «Если мы возьмем два простых больших числа по сорок знаков и перемножим, то у нас получится большое восьмидесятизначное число. Если поставить задачу разложить это число на множители, то это будет очень сложная вычислительная задача, на основе которой как раз построены многие вопросы информационной безопасности. Все они заключаются в создании разных алгоритмов, которые завязаны на сложностях подобного рода», — говорит Калмынин.

Оцените материал
Оставить комментарий (0)

Самое интересное в соцсетях

Топ 5 читаемых



Самое интересное в регионах